
Vertex-count-agnostic 
Morph Targets

by Norman Schaar



The Goal

Optimize a high detailed pre-calculated fluid 
simulation for use in game.



The Problem:

● The calculated simulation is a sequence of 
meshes, each mesh differs in triangle count 
and vert count.

● Each frame would require the same amount 
of triangles AND verts for morphing to be 
possible.



Textures in Vertex Shader:
- DirectX 11 compatible graphic cards allow textures to 

be used in vertex shader. In other words: we can 
manipulate verts with textures.

- We can store pretty much any vert attribute in a pixel

- A Look Up Table texture can be created with multiple  
vert positions and normals



The Texture:

This is a cropped portion of the vert position texture.



The Texture:

● Every pixel represents a vert position. Three pixels represent one triangle.
● If three pixels are black it means that that triangle is not needed for that 

frame and so its vert positions will be 0,0,0. The triangle will virtually cease 
to exist

● Each row of pixels is a morph target



Step #1: Optimize Meshes
● Decide a target face count for your meshes. The goal is to have roughly 

the same amount of faces for every mesh. Note: we don’t need to have the 
exact same face count or vert count.

● Optimizers typically don’t allow you to specify a target face count. They 
allow you to control vert percentage or vert count. I had to write a script 
that tries out different vert counts until it reaches the desired target face 
count.

The reason why the face count is important is because we will eventually split 
every geometry vert. Our final vert count = face count * 3



Step #1: Optimize Meshes (optional)
Before running the optimization through every mesh you can:
● Use Volume Select modifier in 3ds Max to select faces that are making contact with 

surfaces and are not seen by the camera. Add a Mesh Delete modifier to delete the 
selection.

● Add a relax modifier to soften the topology. In my case I created the simulation with 
a huge grid as I had no time to calculate a more detailed simulation.

● I also added a Relax modifier after the optimization was done. 3dsMax ProOptimizer 
creates very thin triangles at time which cause shading anomalies.



Step #1: Optimize Meshes (optional)
This is the result after Relax and Mesh Delete modifiers:



Step #2: Reorder verts
Even if your meshes had the same vert count and face count morphing would 
not work right of the bat. This is what will happen if you attempt to morph:

 

Why is this happening? Let’s take a closer look at the geometry...

 



Step #2: Reorder verts
Even if your mesh has the same face count and vert count, chances are that 
the vert index will be all over the place.

 



Step #2: Reorder verts
To fix this I wrote a script that will automatically give each triangle’s verts a 
sequential vert ID. And this is how morphing will look:

 

This is the expected and desired behaviour. Don’t 
expect a smooth transition between the frames. There 
is simply no data to make this a smooth transition.
Think about it, if you wanted to interpolate the fluid 
simulation you would have to re-sim it.

One thing that I need to look into is reordering the verts 
based on triangle distance between frames. This could 
result in more organic (but still no way correct) 
transitions. I will try it out just to see what transitions 
look like with different vert ID sorting.

 



Step #3: Render Position Texture
● The width of the image will be determined by the maximum vert count in 

your meshes. Remember vert count = face count *3
● The height of the image is determined by the frames of the simulation

In this example we have a 3390 verts (1130 faces) and 300 frames. This 
texture has less pixels than a 1024x1024 texture.
Sadly the texture needs to be uncompressed since compression will alter the 
data too aggressively.



Step #3: Render Position Texture
● Keep in mind that even though the texture is uncompressed, RGB is low precision.

Vert positions are usually highp. In order to alleviate the pain of lowering the precision, the data 
is packed per channel to make use of the entire 0 to 1 range.
The script outputs two Point 3 values that you need to multiply and add to the texture in the 
shader to un pack the data again.

● Graphic cards nowadays support non power of two textures. But is there a penalty? Are non 
power of two textures harder to fit in the texture pool?
If anyone knows please let me know.

If it were a problem, the pixels could also be rendered in a block like fashion. Like a flipbook 
texture. But it would result in some unused pixels as you would rarely ever use 100% of a 
square texture. I’ve also created a tool that would help you decide the proper dimensions of 
these blocks taking into account frame and vert count.



Step #4: Render Normal Texture
The normal data is packed from -1 to 1 range to a 0 to 1 range.
Exact same process as the position texture, but instead we save the normal 
data for every vert.
This process takes a bit more time because we can’t simply use the vert’s 
normal. Keep in mind that the verts were split in the process and so the mesh 
has now a faceted look and many more verts! We do not want that normal.

For a smooth finish you need to have a version of the mesh with the welded 
verts and a single smoothing group, so that’s less verts!

The script has to go find the corresponding vert of the smoothed mesh and 
retrieve its normal.



Step #5: Generate Mesh
The mesh is a series of floating triangles that reside within the bounding box of the complete 
simulation.



Step #5: Generate Mesh
Why are they floating?
When offsetting verts in a mesh through a shader the bounding box of the object is never updated.
You can essentially have geometry outside of the objects bounding box. But the CPU won’t know 
about it.
Many engines will hide the meshes once they are outside of the camera frustum and the way they 
determine this is by checking against the object’s bounding box.

This is why I have the triangles occupy the space of the bounding box. If I had them all with Z=0 the 
bounding box would be too different from the deformed mesh.

Why are they not stacked or overlapped?
If they are too close you run the risk that your engine will automatically weld the verts, like Unreal 4 
does.



Step #5: Generate Mesh
Why are they pointing up?
By having the triangles point up the normal is [0,0,1]. Which is a blank slate essentially.
If I had to deal with any other normal direction it would mean that I would have to compensate for it 
with my low precision normal texture with a the normal’s difference. Chances are that the low precision 
texture won’t be enough to compensate for the high precision normal data.

For the same reason I save the world position of the verts instead of a difference.



Step #5: Generate UVs
● The UVs are ordered in a row and centered in the pixel. This is all done through script as well
● The V position in this example does not matter as we will fully determine this value in the shader



Step #6: The Material
Here is an overview:



Step #6: The Material
Here is an overview of the UVs:



Step #6: The Material

● We put the Time node through a frac and take the number of frames into 
account so that the UVs jump to every row of pixels instead of interpolating 
between them since this would generate incorrect mesh interpolation.

● The V coordinate is also placed in the row’s center.

● As you can see the U coordinates are left untouched



Step #6: The Material
Here is an overview of the Position Data:



Step #6: The Material

● The verts of the mesh are moved to [0,0,0].

● Our data is unpacked with the vec3 values that the script provided.

● The actor world position is added to our data so that the geometry follows 
our actor around instead of sticking to [0,0,0] when the actor is moved.



Step #6: The Material
Here is an overview of the Normal Data:



Step #6: The Material

● The normal data is unpacked.
● The normals need to be calculated in the vertex shader. Otherwise they 

will interpolate incorrectly.
The only way I found to force certain calculations to happen in the vertex 
shader in Unreal Engine is to create “Custom UVs”. These are meant for 
mobile devices, where calculating UVs in the vertex shader prevents 
dependent texture reads.
We have to pretend our normal data are in fact UVs. I intentionally leave 
Custom UV0 unplugged since UV0 needs to be left untouched. Custom 
UVs override regular UVs calculated in the fragment shader.



The Result

http://www.youtube.com/watch?v=Tj3Bz9OFQlE


What’s next?
● Save other vert attributes and simulation properties

○ UVs
○ Thickness
○ Color distribution

● Create the UI for the maxscript tools
● Research color sorting algorithms to test different interpolations between 

frames
● How does this apply to:

○ Cloth tearing apart
○ Particles



Special thanks to
Matt Vitalone, Francisco García-Obledo Ordóñez, Hanno Hinkelbein and the 
Real Time VFX Facebook group!

Email: Norman3D@gmail.com
Twitter:  @Norman3D

Contact Info:

mailto:Norman3D@gmail.com

